Knot Adjacency and Fibering

نویسنده

  • EFSTRATIA KALFAGIANNI
چکیده

It is known that the Alexander polynomial detects fibered knots and 3-manifolds that fiber over the circle. In this note, we show that when the Alexander polynomial becomes inconclusive, the notion of knot adjacency can be used to obtain obstructions to fibering of knots and of 3-manifolds. As an application, given a fibered knot K′, we construct infinitely many non-fibered knots that share the same Alexander module with K′. Our construction also provides, for every n ∈ N , examples of irreducible 3-manifolds that cannot be distinguished by the Cochran-Melvin finite type invariants of order ≤ n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Degree Knot Adjacency as Obstruction to Fibering

It is know that the Alexander polynomial detects fibered knots and 3-manifolds that fiber over the circle. In this note, we show that when the Alexander polynomial becomes inconclusive, the notion of “knot adjacency”, studied in [KL], can be used to obtain obstructions to fibering of knots and of 3-manifolds. As an application, given a fibered knot K′, we construct infinitely many non-fibered k...

متن کامل

Alexander-Lin twisted polynomials

X.S. Lin’s original definition of twisted Alexander knot polynomial is generalized for arbitrary finitely presented groups. J. Cha’s fibering obstruction theorem is generalized. The group of a nontrivial virtual knot shown by L. Kauffman to have trivial Jones polynomial is seen also to have a faithful representation that yields a trivial twisted Alexander polynomial.

متن کامل

Twisted Alexander Polynomials of Hyperbolic Knots

We study a twisted Alexander polynomial naturally associated to a hyperbolic knot in an integer homology 3-sphere via a lift of the holonomy representation to SL(2,C). It is an unambiguous symmetric Laurent polynomial whose coefficients lie in the trace field of the knot. It contains information about genus, fibering, and chirality, and moreover is powerful enough to sometimes detect mutation. ...

متن کامل

On normal subgroups of an amalgamated product of groups with applications to knot theory

In this paper, we give some necessary and sufficient conditions for a normal subgroup of an amalgamated product of groups to be finitely generated. We apply these conditions together with Stallings’ fibering theorem to prove that an irreducible multilink in a homology 3-sphere fibers if and only if each of its multilink splice components fibers.

متن کامل

Profinite Rigidity, Fibering, and the Figure-eight Knot

We establish results concerning the profinite completions of 3-manifold groups. In particular, we prove that the complement of the figure-eight knot SrK is distinguished from all other compact 3-manifolds by the set of finite quotients of its fundamental group. In addition, we show that if M is a compact 3-manifold with b1(M) = 1, and π1(M) has the same finite quotients as a free-by-cyclic grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006